INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

On Some Relations OF Area and Volume of Rectangular Prism and the Diophantine Equation $\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$
 Dr. Rajive Atri
 Associate Professor and Head
 Department of Mathematics, C.S.S.S. (PG) College, Machhra, Meerut

In this paper, a relation between volume V and surface area S of a rectangular prism has been taken as $V=\frac{n}{2} S, n$ is a positive integer. Diophantine equation $\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$ has been discussed for positive integer solutions in different cases. The Diophantine equation $\frac{q}{p}=$ $\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$ has also been discussed for positive integer solutions.

Key words: Rectangular prism and Diophantine equation

Introduction:

Hari Kishan et. al. (2011) discussed the Diophantine equations of second and higher degree of the form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+z x)$ etc. Rabago, J. F.T. \& Tagle, R.P. (1913) discussed the area and volume of a certain regular solid and the Diophantine equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Sander, J. (1913) discussed the Diophantine equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and obtained solutions of this Diophantine equation.

In this paper, the relation between area and volume of rectangular prism and the Diophantine equation $\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$ has been discussed. A rectangular prism has base as a
rectangle. The Diophantine equation $\frac{q}{p}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$ has also been discussed for positive integer solutions.

Analysis:

Let l, w and h be the length, width and height (in positive integer) of a rectangular prism respectively. Then volume V and surface area S of rectangular prism are given by:

$$
\begin{equation*}
V=l w h \text { and } S=2(l w+w h+l h) \tag{1}
\end{equation*}
$$

Now we consider the following relation between V and S :

$$
\begin{equation*}
V=\frac{n}{2} S . \tag{2}
\end{equation*}
$$

This implies that

$$
\begin{array}{l|l}
l w h=n(l w+w h+l h), \\
\text { or } \tag{3}\\
\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h} .
\end{array}
$$

This is the given Diophantine equation.
Now we consider the following cases:
Case 1: Rectangular prism is a cube: In this case $l=w=h$. Therefore from (3), we have

$$
l^{3}=3 n l^{2} .
$$

This gives $l=w=h=3 n$. Thus in this case, the given Diophantine equation is given by

$$
(l, w, h)=(3 n, 3 n, 3 n) .
$$

Few examples may be $(l, w, h)=(3,3,3),(6,6,6),(9,9,9)$ and $(12,12,12)$ etc.

Case 2: Two dimensions of the prism are equal and third is different:

$$
\text { Let } l=w \neq h \text {. }
$$

In this case, equation (3) implies that

$$
l^{2} h=n\left(l^{2}+2 l h\right),
$$

or $\quad l(l(n-h)+2 n h)=0$,
or $\quad l=w=\frac{2 n h}{h-n}$.
If $\quad h=2 n$ then from (4), we have $l=w=4 n$. Thus we have

$$
(l, w, h)=(4 n, 4 n, 2 n) .
$$

If $\quad h=3 n$ then from (4), we have $l=w=3 n$. Thus we have

$$
(l, w, h)=(3 n, 3 n, 3 n) .
$$

This is the same as in case 1 .
If $\quad h=4 n$ then from (4), we have $l=w=\frac{8}{3} n$. Thus we have

$$
\begin{equation*}
(l, w, h)=\left(\frac{8}{3} n, \frac{8}{3} n, 4 n\right) . \tag{5}
\end{equation*}
$$

From (5), it is clear that the rectangular prism has integral dimensions when n is a multiple of 3. Let $n=3 m$. Then

$$
(l, w, h)=(8 m, 8 m, 12 m)
$$

If $\quad h=5 n$ then from (4), we have $l=w=\frac{5}{2} n$. Thus we have

$$
\begin{equation*}
(l, w, h)=\left(\frac{5}{2} n, \frac{5}{2} n, 5 n\right) . \tag{6}
\end{equation*}
$$

From (6), it is clear that the rectangular prism has integral dimensions when n is a multiple of
2 . Let $n=2 m$. Then

$$
(l, w, h)=(5 m, 5 m, 10 m)
$$

If $\quad h=6 n$ then from (4), we have $l=w=\frac{12}{5} n$. Thus we have

$$
\begin{equation*}
(l, w, h)=\left(\frac{12}{5} n, \frac{12}{5} n, 6 n\right) . \tag{7}
\end{equation*}
$$

From (7), it is clear that the rectangular prism has integral dimensions when n is a multiple of 3. Let $n=5 m$. Then

$$
(l, w, h)=(12 m, 12 m, 30 m) .
$$

In the same way, the other solutions can be obtained.
There may be two other cases given by $l=h \neq w$ and $h=w \neq l$. Solutions can be found for these cases also.

Case 3: All dimensions are unequal: Let $l \neq w \neq h$. We have to find the values of $1, \mathrm{w}$, and h such that

$$
\begin{equation*}
\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h} \tag{8}
\end{equation*}
$$

$$
\text { L.H.S }=\frac{1}{n}=\frac{1}{2 n}+\frac{1}{3 n}+\frac{1}{6 n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}=\text { R.H.S. }
$$

This gives $l=2 n, w=3 n, h=6 n$. Since l, w and h are symmetric in the Diophantine equation, we have $3!=6$ different solutions.

Further suppose we have

$$
\begin{equation*}
\frac{q}{p}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h} . \tag{9}
\end{equation*}
$$

L.H.S. $=\frac{q}{p}=\frac{1}{\frac{p+1}{q}}+\frac{1}{p\left(\frac{p+1}{q}\right)}$

$$
=\frac{1}{p}+\frac{1}{\frac{p+1}{q-1}}+\frac{1}{p\left(\frac{p+1}{q-1}\right)}=\text { R.H.S. }
$$

This gives $l=p, w=\frac{p+1}{q-1}$ and $h=p\left(\frac{p+1}{q-1}\right)$. Now if p, q are arbitrary positive integers with $p+1 \equiv 0(\bmod (q-1))$ then $(l, w, h)=\left(p, \frac{p+1}{q-1}, p\left(\frac{p+1}{q-1}\right)\right)$ is the solution of Diophantine equation (9). Thus we have the following theorem:

Theorem: If p, q are arbitrary positive integers such that $p+1 \equiv 0(\bmod (q-1))$ then $(l, w, h)=\left(p, \frac{p+1}{q-1}, p\left(\frac{p+1}{q-1}\right)\right)$ is the solution of the Diophantine equation

$$
\frac{q}{p}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h} .
$$

Since l, w and h are symmetric in the Diophantine equation, we have $3!=6$ different solutions.

For example if $p=5$ and $q=3$ then the Diophantine equation is given by

$$
\frac{3}{5}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h} \text { and its solution is given by }(l, w, h)=(5,3,15) .
$$

Concluding Remarks:

Here the relation between surface area S and volume V has been taken as $V=\frac{n}{2} S$ which provide the Diophantine equation $\frac{1}{n}=\frac{1}{l}+\frac{1}{w}+\frac{1}{h}$. Then its integer solutions have been obtained in three different cases. The Diophantine equation $\frac{q}{p}=\frac{1}{l}+\frac{1}{\tilde{w}}+\frac{1}{h}$ has also been discussed for positive integer solutions.

References:

Kishan, H., Rani, M. and Agarwal, S. (2011): The Diophantine Equations of Second and Higher Degree of the form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+z x)$ etc. Asian Journal of Algebra, 4(1), 31-37.

Rabago, J. F.T. \& Tagle, R.P.(2013): The area and volume of a certain regular solid and the Diophantine equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Notes on Number Theory and Discrete Mathematics, 19(3), 28-32.

Sander, J. (1913): A Note on a Diophantine equation. Notes on Number Theory and Discrete Mathematics, 19(4), 1-3.

Erdos, P. \& Straus, E.G. (1950): On a Diophantine Equation. Math. Lapok, 1, 192-210.

