ISSN: 2320-2882

www.ijcrt.org

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT) An International Open Access, Peer-reviewed, Refereed Journal

On Some Relations OF Area and Volume of Rectangular Prism and the Diophantine Equation

Dr. Rajive Atri Associate Professor and Head Department of Mathematics, C.S.S.S. (PG) College, Machhra, Meerut

Abstract:

In this paper, a relation between volume V and surface area S of a rectangular prism has been taken as $V = \frac{n}{2}S$, *n* is a positive integer. Diophantine equation $\frac{1}{n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$ has been discussed for positive integer solutions in different cases. The Diophantine equation $\frac{q}{n}$ = JCR $\frac{1}{l} + \frac{1}{w} + \frac{1}{h}$ has also been discussed for positive integer solutions.

Key words: Rectangular prism and Diophantine equation

Introduction:

Hari Kishan et. al. (2011) discussed the Diophantine equations of second and higher degree of the form 3xy = n(x + y) and 3xyz = n(xy + yz + zx) etc. Rabago, J. F.T. & Tagle, R.P. (1913) discussed the area and volume of a certain regular solid and the Diophantine equation $\frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. Sander, J. (1913) discussed the Diophantine equation $\frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ and obtained solutions of this Diophantine equation.

In this paper, the relation between area and volume of rectangular prism and the Diophantine equation $\frac{1}{n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$ has been discussed. A rectangular prism has base as a rectangle. The Diophantine equation $\frac{q}{p} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$ has also been discussed for positive integer solutions.

Analysis:

Let l, w and h be the length, width and height (in positive integer) of a rectangular prism respectively. Then volume V and surface area S of rectangular prism are given by:

$$V = lwh \text{ and } S = 2(lw + wh + lh).$$
 ...(1)

Now we consider the following relation between *V* and *S*:

$$V = \frac{n}{2}S.$$
 ...(2)

This implies that

lwh = n(lw + wh + lh),

or $\frac{1}{n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$.

This is the given Diophantine equation.

Now we consider the following cases:

Case 1: Rectangular prism is a cube: In this case l = w = h. Therefore from (3), we have

$$l^3 = 3nl^2.$$

This gives l = w = h = 3n. Thus in this case, the given Diophantine equation is given by

$$(l, w, h) = (3n, 3n, 3n).$$

Few examples may be (l, w, h) = (3,3,3), (6,6,6), (9,9,9) and (12,12,12) etc.

(5)

Case 2: Two dimensions of the prism are equal and third is different:

Let $l = w \neq h$.

In this case, equation (3) implies that

$$l^2h = n(l^2 + 2lh),$$

or
$$l(l(n-h) + 2nh) = 0$$
,

or
$$l = w = \frac{2nh}{h-n}$$
...(4)

If h = 2n then from (4), we have l = w = 4n. Thus we have

$$(l,w,h) = (4n,4n,2n).$$

If
$$h = 3n$$
 then from (4), we have $l = w = 3n$. Thus we have
 $(l, w, h) = (3n, 3n, 3n)$.

This is the same as in case 1.

If
$$h = 4n$$
 then from (4), we have $l = w = \frac{8}{3}n$. Thus we have

$$(l,w,h) = \left(\frac{8}{3}n, \frac{8}{3}n, 4n\right).$$

From (5), it is clear that the rectangular prism has integral dimensions when n is a multiple of 3. Let n = 3m. Then

$$(l, w, h) = (8m, 8m, 12m).$$

If h = 5n then from (4), we have $l = w = \frac{5}{2}n$. Thus we have

$$(l, w, h) = \left(\frac{5}{2}n, \frac{5}{2}n, 5n\right).$$
 ...(6)

From (6), it is clear that the rectangular prism has integral dimensions when *n* is a multiple of 2. Let n = 2m. Then

(l, w, h) = (5m, 5m, 10m).

(8)

If h = 6n then from (4), we have $l = w = \frac{12}{5}n$. Thus we have

$$(l, w, h) = \left(\frac{12}{5}n, \frac{12}{5}n, 6n\right).$$
 ...(7)

From (7), it is clear that the rectangular prism has integral dimensions when *n* is a multiple of 3. Let n = 5m. Then

$$(l, w, h) = (12m, 12m, 30m).$$

In the same way, the other solutions can be obtained.

There may be two other cases given by $l = h \neq w$ and $h = w \neq l$. Solutions can be found for these cases also.

Case 3: All dimensions are unequal: Let $l \neq w \neq h$. We have to find the values of l, w, and h such that

$$\frac{1}{n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}.$$

L.H.S=
$$\frac{1}{n} = \frac{1}{2n} + \frac{1}{3n} + \frac{1}{6n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h} = \text{R.H.S.}$$

This gives l = 2n, w = 3n, h = 6n. Since *l*, *w* and *h* are symmetric in the Diophantine equation, we have 3! = 6 different solutions.

Further suppose we have

$$\frac{q}{p} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}.$$
(...(9)
L.H.S. = $\frac{q}{p} = \frac{1}{\frac{p+1}{q}} + \frac{1}{p(\frac{p+1}{q})}$
= $\frac{1}{p} + \frac{1}{\frac{p+1}{q-1}} + \frac{1}{p(\frac{p+1}{q-1})} = \text{R.H.S.}$

This gives $l = p, w = \frac{p+1}{q-1}$ and $h = p\left(\frac{p+1}{q-1}\right)$. Now if p, q are arbitrary positive integers with $p + 1 \equiv 0 \left(mod(q-1) \right)$ then $(l, w, h) = \left(p, \frac{p+1}{q-1}, p\left(\frac{p+1}{q-1}\right) \right)$ is the solution of Diophantine equation (9). Thus we have the following theorem:

Theorem: If p, q are arbitrary positive integers such that $p + 1 \equiv 0 \pmod{(q-1)}$ then $(l, w, h) = \left(p, \frac{p+1}{q-1}, p\left(\frac{p+1}{q-1}\right)\right)$ is the solution of the Diophantine equation $\frac{q}{p} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}.$

Since l, w and h are symmetric in the Diophantine equation, we have 3! = 6 different solutions.

For example if p = 5 and q = 3 then the Diophantine equation is given by

$$\frac{3}{5} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$$
 and its solution is given by $(l, w, h) = (5, 3, 15)$.

Concluding Remarks:

Here the relation between surface area S and volume V has been taken as $V = \frac{n}{2}S$ which provide the Diophantine equation $\frac{1}{n} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$. Then its integer solutions have been obtained in three different cases. The Diophantine equation $\frac{q}{p} = \frac{1}{l} + \frac{1}{w} + \frac{1}{h}$ has also been discussed for positive integer solutions.

References:

Kishan, H., Rani, M. and Agarwal, S. (2011): The Diophantine Equations of Second and Higher Degree of the form 3xy = n(x + y) and 3xyz = n(xy + yz + zx) etc. Asian Journal of Algebra, 4(1), 31-37.

Rabago, J. F.T. & Tagle, R.P.(2013): The area and volume of a certain regular solid and the Diophantine equation $\frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. Notes on Number Theory and Discrete Mathematics, 19(3), 28-32.

Sander, J. (1913): A Note on a Diophantine equation. Notes on Number Theory and Discrete Mathematics, 19(4), 1-3.

Erdos, P. & Straus, E.G. (1950): On a Diophantine Equation. Math. Lapok, 1, 192-210.

